Posts

Monitoring Model Performance: A Faceoff between Amazon SageMaker and Databricks ML

Image
  Model monitoring is crucial in the lifecycle of machine learning models, especially for models deployed in production environments. Model monitoring is not just a "nice-to-have" but is essential to ensure the models' robustness, accuracy, fairness, and reliability in real-world applications. Without monitoring, model predictions can be unreliable, or even detrimental to the business or end-users. As a model builder, how often have you thought about how models’ behavior will change over time? In my professional life, I have seen many production systems managing model retraining life cycle using heuristic, gut feel or scheduled basis, either leading to the wastage of precious resources or performing retraining too late. This is a ripe problem space as many models have been deployed in production. Hence there are many point solutions such as Great Expectations, Neptune.ai, Fiddler.ai who all boast really cool features either in terms of automatic metrics computation, diffe...

Best Practices for Medical Labeling: Ensuring Data Quality

Image
  The healthcare industry has witnessed the remarkable growth of artificial intelligence (AI), which has found diverse applications. As technology advances, AI’s potential in healthcare continues to expand. Nevertheless, certain limitations currently hinder the seamless integration of AI into existing healthcare systems.   AI is used in healthcare datasets to analyze data, provide clinical decision support, detect diseases, personalize treatment, monitor health, and aid in drug discovery. It enhances patient care, improves outcomes, and drives advancements in the healthcare industry. Many AI services such as Amazon Comprehend Medical, Google Cloud Healthcare API, John Snow Labs provide pre-built models. Due to the variety of medical data and requirements for accuracy human in the loop techniques are important to safeguard accuracy. However, the success of AI and ML models largely depends on the quality of the data they are trained on, necessitating reliable and accurat...